منابع مشابه
Linear One-Class Support Tensor Machine
One-class support vector machine is an important and efficient classifier which is used in the situation that only one class of data is available, and the other is too expensive or difficult to collect. It uses vector as input data, and trains a linear or nonlinear decision function in vector space. However, there is reason to consider data as tensor. Tensor representation can make use of the s...
متن کاملR1STM: One-class Support Tensor Machine with Randomised Kernel
Identifying unusual or anomalous patterns in an underlying dataset is an important but challenging task in many applications. The focus of the unsupervised anomaly detection literature has mostly been on vectorised data. However, many applications are more naturally described using higher-order tensor representations. Approaches that vectorise tensorial data can destroy the structural informati...
متن کاملLeast Squares One-class Support Vector Machine on Fuzzy Set
In this paper, we formulate a least squares version of the one-class support vector fuzzy machine (LS one-class SVFM) which is combined with the fuzzy set theory. The parameters in the proposed algorithm, such as weight vector and bias term, are fuzzy numbers. Our model only needs to solve a system of linear equations, instead of a complex quadratic programming problem (QPP) solved in one-class...
متن کاملA Novel Incremental Covariance-Guided One-Class Support Vector Machine
Covariance-guided One-Class Support Vector Machine (COSVM) is a very competitive kernel classifier, as it emphasizes the low variance projectional directions of the training data, which results in high accuracy. However, COSVM training involves solving a constrained convex optimization problem, which requires large memory and enormous amount of training time, especially for large scale datasets...
متن کاملA Class-Incremental Learning Method Based on One Class Support Vector Machine
A method based on one class support vector machine (OCSVM) is proposed for class incremental learning. Several OCSVM models divide the input space into several parts. Then, the 1VS1 classifiers are constructed for the confuse part by using the support vectors. During the class incremental learning process, the OCSVM of the new class is trained at first. Then the support vectors of the old class...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge-Based Systems
سال: 2016
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2016.01.007